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How Should One Define a (Weak) Crystal? 
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We compare two proposals for the study of positional long-range order: one in 
terms of the spectrum of the translation operator, the other in terms of the 
Fourier spectrum. We point out that only the first one allows for the considera- 
tion of molecular, as opposed to atomic, (weakly) periodic structures. We 
illustrate this point on the Thue-Morse system. 
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One of the fundamental questions of statistical mechanics is to describe 
ground states of systems of many interacting particles. It is an important 
problem to decide if, and to what extent, ground states are ordered, 
crystalline, or otherwise. (1'2) For  the description of positional long-range 
order, which is necessary for the study of both crystals (periodic structures) 
and noncrystalline ordered structures such as quasicrystals, ~3"4) "turbulent" 
crystals, ~5) and "weakly periodic structures, ''~6) there have been two 
different main approaches in the literature, both in terms of spectral 
properties. 

In the first one, which has been advocated within the infinite-volume 
approach to statistical mechanics, (5'7-13~ one considers the spectrum of the 
Euclidean group acting as unitary operators on an appropriate Hilbert 
space. For  classical models this is the L2(~) space for a translation- 
invariant Gibbs measure or ground-state measure #. To be more precise, 
we will discuss classical lattice gas models, in which every site of a lattice 
Z a can be occupied by one of two (or more generally a finite number of) 
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different particles (one may also think about them as different orientations 
of a spin variable). An infinite lattice configuration is an assignment of par- 
ticles to lattice sites, that is, an element of f2 = { - 1, + 1 }z~. We will be 
mostly concerned with configurations which have uniformly defined fre- 
quencies for all finite patterns. More precisely, to find the frequency of a 
finite pattern in a given configuration, we first count the number of times 
it appears in a box of size I and centered at the origin of the lattice, divide 
it by 1 d, and then take the limit 1--, c~. If the convergence is uniform with 
respect to the position of the boxes, then we say that the configuration has 
a uniformly defined frequency of this pattern. The closure of the orbit 
under translation of any such configuration supports exactly one ergodic 
translation-invariant measure on Q, say #, which is uniquely specified by 
the frequencies of all finite patterns. Such systems are called uniquely 
ergodic. The trivial example is the Ising antiferromagnet, where, apart from 
the infinitely many defect ground-state configurations, there are two 
alternating ground-state configurations, but only one translation-invariant 
ground-state measure, which is just their average. Let us recall that a 
sequence of configurations converges if for any finite subset of the lattice, 
all but a finite number of configurations are the same when restricted to 
this subset. Ergodicity of the measure means that for any local observable 
f the integral f f d# = #(f) ,  i.e., the average of the observable, is equal to 
limn ~ co (l/N) Y~_ 1 f(T(x)), where T is a shift operator, for #-almost all x. 
For a uniquely ergodic measure the limit is uniform with respect to all 
choices of x. A uniquely ergodic measure can be a zero-temperature limit 
of a low-temperature Gibbs state (an infinite-volume grand canonical 
probability distribution) for an appropriate interaction. On the other 
extreme there is the example of the product (or Bernoulli) measure obtain 
by taking independently every spin to be + or - with probability 1/2 at 
every site. This translation-invariant measure corresponds to taking infinite 
temperature. With respect to this measure, the frequency of plus spins 
equals 1/2, but has unbounded fluctuations, as large regions of plus spins 
(and in fact any finite configuration) occur with finite (though small) 
density. In a typical "random" sequence these large fluctuations will 
certainly occur at various positions; hence the closure of its orbit is the 
whole configuration space g?. 

If the system is uniquely ergodic (a property which is generic for 
ground states~ the support of its unique ergodic measure contains one 
minimal set, i.e., a nonempty, closed, translation-invariant subset of g? 
which does not contain any proper subsets with this property. Physically, 
this means that all configurations containing defects have been eliminated. 
An example of such a configuration is a ground-state configuration of the 
one-dimensional Ising antiferromagnet with spins ~, = ( - 1)" for n >~ 0 and 
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~n = ( - 1)n + 1 for n < 0. The defect here is between - 1 and 0. The property 
of minimality has been advocated by Aubry (6~ under the name "weak 
periodicity" and has been discussed in ref. 15 under the name "recurrence." 
Minimality means also that any pattern in a sequence appears again within 
a bounded distance. However, as asserted by Radin (16~ in this connection, 
this property of minimality or even unique ergodicity does not imply 
anything in the sense of long-range order either in the sense of mixing 
properties (asymptotic independence at large distances) or spectral proper- 
ties, as the Jewett-Krieger theorem tells us that any ergodic measure 
(including highly disordered ones) is isomorphic to a uniquely ergodic 
one.(t7 197 

One possibility of describing positional long-range order is to consider 
spectral properties of the shift operator T [-considered as a unitary 
operator on L2(#)]. L2(]/) is the space of functions which are square- 
integrable with respect to/~ and is spanned by sums and products of spin 
values at finite sets of lattice sites. We write T f ( x ) = f ( T ( x ) ) .  If the support 
of/~ is small, many of these products coincide, viewed as elements of L2(/~). 
For example, in the one-dimensional Ising antiferromagnet O'oO2k = 1 for 
both periodic ground-state configurations and any k, hence ~roa2k and 1 are 
in the same equivalence class. In fact, LZ(#) is two-dimensional here and is 
spanned by % and 1. The simplest case of a one-dimensional lattice has 
been widely studied in ergodic theory. (2~ We recall that for the study of the 
spectrum of the shift operator one considers generalized 2-point functions 
of the form Cs(n ) = p ( f T " f ) ,  where f can be any function in L2(p). By 
Bochner's theorem one can write Cf(n ) - -S  2~ exp(2~i2n)mf(d2) ,  where rn I 
are measures on the interval [-0, 2~]. If we consider higher-dimensional 
lattices, we get measures on [0, 2~] a and, if we replace a lattice by a 
continuous space, measures on R a. If for any choice of f m s has a pure 
point, singular continuous, or absolutely continuous part in its Lebesgue 
decomposition mF= mf, pp ~-mf, sc-Jr mf.ac , we say that the spectrum of the 
shift has a pure point, singular continuous, or absolutely continuous com- 
ponent, respectively. If the point spectrum consists solely of finitely many 
points, one interprets this as a crystal; if one has a dense point spectrum, 
one has a quasicrystal; and if there is also some (singular) continuous 
spectrum, one might have a "turbulent" crystal. (5) When there is no long- 
range order, only an absolutely continuous spectrum is expected. However, 
there is always one discrete point in the spectrum at the origin. This is due 
to the fact that the constants are translation-invariant and thus are eigen- 
functions of the shift operator. 

In the second approach, which has been pursued by many people 
interested in the theory of quasicrystals (see, for example, refs. 15 and 
21-27), one considers the Fourier spectrum (also called a structure factor 
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or a correlation measure). This begins with the fact that diffraction pattern 
are given by the Fourier transform of the density of the diffracting 
matter, A structure factor I(/~) is proportional to the intensity of a spot k 
in the diffraction pattern and for one-dimensional systems, I ( k )=  
lY~N _uf(n)exp(2nikn)l 2, where f(n) is an atomic scattering factor of an 
atom at a position n. For  uniquely ergodic systems it can be shown (2~ that 
dk I(k)/(2N+ 1) converges weakly, as N ~ 0% to the so-called correlation 
measure, which is a spectral measure m F of the shift operator corresponding 
to a special choice of f = f ( 0 )  which evaluates sequences of atomic 
scattering factors at the origin [if we have only one type of atom, f(n) 
measures the presence of an atom at a position n and can be written 
f(n) = �89 + 1)]. mf is then the Fourier transform of the 2-point function 
~(f(O)f(n)): #(f(O)f(n))=~ '~exp(nikn) mf(dk), where # is the unique 
ergodic measure supported by the closure of the orbit of a configuration of 
diffracting matter, my is a measure on the interval [0, 2hi  and it will have 
a (quasi)crystalline character if it consists solely of (in)finitely many points 
in the pure point part of its Lebesgue decomposition. 

We first point out that these two notions are not equivalent. We will 
illustrate this point on the example of the Thue-Morse system. Moreover, 
we observe that the first characterization has the advantage of allowing us 
to recognize molecular structures. 

To define the Thue-Morse,  system, we start by taking a sequence of 
all + spins (ai = +1, i e Z). At the first step we flip every second spin. At 
the nth step we flip all blocks of 2 "-1 spins within the previous ( n - 1 ) t h  
configuration from the site (2k+  1)2 n 1 + 1 to ( 2 k + 2 ) 2  n-1 for every k. 

A cluster point of this sequence of periodic configurations of period 2" 
is a nonperiodic sequence called a Thue-Morse sequence. Its first 32 
elements are 

+ - - + - + + - - + + - + - - + - + + - + - - + + - - + - + + -  

The closure of its orbit under translation supports exactly one ergodic 
translation-invariant measure ~tTM. ~28) 

The Thue-Morse measure/~TM was shown to be a unique ground state 
for arbitrarily rapidly decaying 4-body interactions. ~29) Some aspects of its 
nonconventional long-range order were shown to persist at finite 
temperatures for some slowly decaying but still summable 4-body inter- 
actions. ~3~ In fact, a Thue-Morse sequence has been experimentally 
realized ~31'32) and the spectrum was observed to be singular continuous. 

If one considers the Fourier transform of C(n)=#T~(croan), it is 
known to be singular continuous. ~2~ Thus, looking at the Fourier 
spectrum, there would not be any quasicrystalline structure. However, if we 
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consider the shift operator acting on the whole space L2(prM), we find a 
richer behavior. (2s) In particular, we have L2(#TM)=L2'~ 
L2 .... .  (PrM), where the L 2'~ . . . .  (PTM) spaces are spanned by odd/even 
functions with respect to the spin-flip operator ~i-~ -0 i .  The T acting on 
L2'~ ) has a singular continuous spectrum, while acting on 
L2 ...... (#TM) it has a dense point spectrum. Thus, if we look at correlation 
functions Cf(n) = f lTM(fTnf)  with f even, for example, f =  O'oa 1, or more 
generally f =  ax, IX[ even, its Fourier transform consists only of points 
(g-peaks). The special choice f =  0 o gives a singular continuous spectrum 
because of the oddness of Oo. If we consider an X to be the shape of a 
molecule, these molecules can have b-peaks and can form more ordered 
structures than the underlying atoms. To be more precise: if o) is any 
Thue-Morse sequence, then s] = TnoA(a)) for [A1 even is a q-periodic 
sequence according to the following definition(33~: A configuration of 
particles is q-periodic if, when a certain fraction of them is ignored, the rest 
of tile configuration is periodic; the smaller the fraction, the larger the 
period. By construction, a Thue-Morse sequence is a sequence of blocks of 
spins Mk of length 2 m such that Mk= +M(m) for some fixed block 
configuration M(m) and this holds for all m > 0. Now, if one ignores lattice 
sites at the boundaries between consecutive Mk (the density of which is 
[ ( d i am(A) -  1)/2m], then s] is a part of a periodic configuration of period 
2 m, which shows that s]  is q-periodic. 

As an example, if one places a delta-function weight midway between 
each pair of equal adjacent spins and takes the Fourier transform of this 
object, it will consists entirely of delta peaks, whereas, if a delta function 
is placed midway between each pair of + neighboring spins, the Fourier 
transform will have both delta peaks and a continuous part, and finally, if 
delta functions are placed on the + spins and omitted from the - spins, 
the Fourier transform will have no delta peaks except the one at the origin. 
If a "molecule" is a pair of two neighboring equal spins, the molecular 
spectrum is quasiperiodic, as b~0o~ is even, while a "molecule" consisting 
of two + neighbors gives rise to a mixed spectrum because f =  
�88 1)(o1+1)=~(cr0o1+1 +Oo+Ot)  has both an even and on odd 
part. Finally, placing delta functions just on the + spins (the atoms) 
corresponds to taking f =  �89 + 1), which is a sum of an odd function and 
a constant, producing only a b-peak at the origin. 

For an example of a 2-dimensional system which has no b-peaks, at 
either the atomic or the molecular level, see ref. 16, following ref. 36. This 
is in fact a unique ground state for a classical lattice gas model with a 
nearest neighbor interaction. 

As for positive temperatures, there exists a 3-dimensional finite-range 
ferromagnetic model due to Slawny (37) of a mixing Gibbs state; thus, 
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# ( f T n f )  ~ [ # ( f ) ] 2  for all f ,  which has long-range  order  in the sense tha t  
it is no t  an ext remal  G ibbs  state. I t  is not  3-mixing, that  is, g ( f T n l f T n 2 f )  

[ # ( f ) ] 3  for some f and  In I I, [n2[ growing such tha t  also Intl, ]n21 growing 
such tha t  also [ n l - n 2 l  ~ oe. This is an example  of Rueile 's  (5) p r o p o s e d  
defini t ion of a " tu rbu len t"  crystal ,  a system in which the decompos i t i on  
into ex t remal  G ibbs  states is s tr ict ly finer than  the a lmos t  per iodic  decom-  
pos i t ion  connec ted  with the discrete pa r t  of the spec t rum of the shift 
opera to r .  
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